Abstract

Excited-state dynamics and complete transient absorption features of the trimer tris-4,4',4' '-(4-nitrophenyleethynyl)triphenylamine and the monomer 4-N,N-(dimethylamino)-4'-nitrotolane have been obtained from femtosecond pump-probe spectroscopy. The measurements are carried out to understand the mechanism behind enhanced two-photon absorption cross-sections of branched systems over their linear counterparts. Absorption and emission transition dipole moments of monomer and trimer in toluene have suggested that the emitting state of trimer is different from the monomer and probably is arising from the charge-delocalized C(3) symmetry state. Ultrafast transient absorption measurements on these molecules have spectroscopically validated the presence of an initial electron delocalized state with the C(3) symmetry state in the trimer molecule. The results have shown that there is a slower rate of internal conversion from the C(3) symmetry state to intramolecular charge transfer of trimer suggesting a barrier between them. Also, presence of a charge-stabilized state and involvement of a nonemissive state in the excited-state deactivation has been observed for both monomer and trimer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.