Abstract

Excited-state dynamics and solvent-solute interactions of 1,1'-diethyl-2,2'-cyanine iodine (1122C) in alcoholic solutions are investigated using time-integrated three-pulse photon-echo spectroscopy. 1122C serves as a model compound for ultrafast photoinduced isomerization-a key process in the light reception of plants, bacteria, and human vision. The photoreaction in 1122C is interrogated in dependence on solvent and excitation wavelength. The wavelength-dependent three-pulse photon-echo peak shift indicates strong alterations of the reaction pathways and points to the existence of a direct internal conversion channel in close proximity to the Franck-Condon point of absorption. The solvent-dependent S1-S0 internal conversion time does not follow conventional sheared viscosity dependence, suggesting that the solvent local friction has to be considered to account for the observed isomerization kinetics. The concerted discussion of transient grating and three-pulse photon-echo peak-shift data allows us to derive a complete picture of the solvent-solute interaction-controlled photoreaction. The results obtained are related to other work on reactive systems and are discussed in the framework of multilevel response functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.