Abstract

Finding shortest paths in a Euclidean plane containing polygonal obstacles is a well-studied problem motivated by a variety of real-world applications. The state-of-the-art algorithms require finding obstacle corners visible to the source and target, and need to consider potentially a large number of candidate paths. This adversely affects their query processing cost. We address these limitations by proposing a novel adaptation of hub labeling which is the state-of-the-art approach for shortest distance computation in road networks. Our experimental study conducted on the widely used benchmark maps shows that our approach is typically 1-2 orders of magnitude faster than two state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.