Abstract

We have prepared a zinc chlorophyll (ZC) derivative that self-assembles into a cyclic tetramer as evidenced by small-angle X-ray scattering studies in solution using a synchrotron source. This cyclic tetramer exhibits intramolecular energy transfer rates determined from singlet−singlet annihilation and transient absorption anisotropy studies that are comparable to those observed previously only for covalent ring structures. The larger transition dipole moment for the lowest energy electronic transition of ZC compared to that of metalloporphyrins increases the rate of Forster (through-space) energy transfer between the chlorophylls. Our synthetic and self-assembly strategy makes it possible to design larger monodisperse chlorophyll rings for energy transfer in artificial photosynthetic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.