Abstract

The ionic phosphate groups in the DNA backbone play a key role for DNA hydration. We study ultrafast vibrational dynamics and local interactions of phosphate groups and water by femtosecond two-color pump-probe spectroscopy. The asymmetric (PO(2))(-) stretching vibration nu(AS)(PO(2))(-) of artificial DNA oligomers containing 23 alternating adenine-thymine base pairs displays a lifetime of 340 fs, independent of the hydration level. For DNA at zero relative humidity, excess energy from the decay of the phosphate excitation is transferred within DNA on a 20 ps time scale. For fully hydrated DNA, the water shells around the phosphates serve as a primary heat sink accepting vibrational excess energy from DNA on a femtosecond time scale. OH stretching excitation of water molecules around fully hydrated DNA induces an ultrafast nu(AS)(PO(2))(-) response which includes rearrangements of the hydration shell and a reduction of the average number of phosphate-water hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.