Abstract

The relaxation and localization times of excited electrons in CdS/CdSe/CdS colloidal quantum wells were measured using subpicosecond spectroscopy. HRTEM analysis and steady-state PL demonstrate a narrow size distribution of 5-6 nm epitaxial crystallites. By monitoring the rise time of the stimulated emission as a function of pump intensity, the relaxation times of the electron from the CdS core into the CdSe well are determined and assigned. Two-component rise times in the stimulated emission are attributed to intraband relaxation of carriers generated directly within the CdSe well (fast component) and charge transfer of core-localized carriers across the CdS/CdSe interface (slow component). This is the first reported observation of simultaneous photon absorption in the core and well of a quantum-dot heterostructure. With increasing pump intensity, the charge-transfer channel between the CdS core CdSe well contributes less to the stimulated emission signal because of filling and saturation of the CdSe well state, making the interfacial charge-transfer component less efficient. The interfacial charge-transfer time of the excited electron was determined from the slow component of the stimulated emission build-up time and is found to have a value of 1.2 ps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.