Abstract

We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature optical properties of CdSe quantum dot solids after exchanging native aliphatic ligands for thiocyanate and subsequent thermal annealing. In contrast to trends established at room temperature, our data show that at low temperature the band-edge absorptive bleach is dominated by 1S3/2h hole occupation in the quantum dot interior. We find that our ligand treatments, which bring enhanced interparticle coupling, lead to faster surface state electron trapping, a greater proportion of surface-related photoluminescence, and decreased band-edge photoluminescence lifetimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.