Abstract

ABSTRACTEnergy transfer from photo-excited electrons in a metal thin film to the dielectric substrate is important for understanding the ultrafast heat transfer process across the two materials. Substantial research has been conducted to investigate heat transfer in a metal-dielectric structure. In this work, a two-temperature model in metal was used to analyze the interface electron and dielectric substrate coupling. An improved temperature and wavelength-dependent Drude–Lorentz model was implemented to interpret the signals obtained in optical measurements. Ultrafast pump-and-probe measurements on Au-Si samples were carried out, where the probe photon energy was chosen to be close to the interband transition threshold of gold to minimize the influence of non-equilibrium electrons on the optical response and maximize the thermal modulation to the optical reflectance. Electron-substrate interface thermal conductance at different pump laser fluences was obtained, and was found to increase with the interface temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.