Abstract

The interaction of an ultra-intense laser with a solid state target allows the production of multi-MeV proton and ion beams. This process is explained by the target normal sheath acceleration (TNSA) model, predicting the creation of an electric field on the target rear side, due to an unbalanced positive charge. This process is related to the emission of relativistic ultrafast electrons, occurring at an earlier time. In this work, we highlight the correlations between the ultrafast electron component and the protons by their simultaneous detection by means of an electro-optical sampling and a time-of-flight diagnostics, respectively, supported by numerical simulations showing an excellent agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.