Abstract

Electron and coherent phonon dynamics at potassium-covered Cu(111) surfaces have been studied by using femtosecond time-resolved second-harmonic generation (TRSHG). At the coverages from 0.22 to 0.35 monolayer (ML), TRSHG traces show the oscillatory component with a frequency of $3.05\ifmmode\pm\else\textpm\fi{}0.05\text{ }\text{THz}$. The amplitude of this component decreases as coverage increases higher than $\ensuremath{\sim}0.35$ ML, whereas another oscillating component with a frequency of $1.26\ifmmode\pm\else\textpm\fi{}0.03\text{ }\text{THz}$ grows. Both components are ascribed to K-Cu stretching motion. The spectral changes with coverage suggest that the overlayer structure varies with lateral compression. The fast transient peak in TRSHG traces at around zero delay changes its sign from negative to positive when coverage exceeds $\ensuremath{\sim}0.22$ ML. Since the quantum-well state (QWS) is partly filled at around this coverage, electrons in the QWS are principally responsible for the transition of the electronic response. Furthermore, the excitation photon energy dependence of TRSHG traces indicates that the excitation of substrate $d$-band electrons, giving rise to rapid charge fluctuations in the QWS, generates the coherent K-Cu stretching vibration. Consequently, the QWS plays a major role in the electronic and nuclear dynamics induced by pump pulses at $h\ensuremath{\nu}=2.2\text{ }\text{eV}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.