Abstract

Semiconductor devices have become indispensable for generating electromagnetic radiation in every day applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio frequency emitters enable wireless communications. But the ultrafast electromagnetic waves, whose frequency locates in terahertz (THz) region (0.3 – 30 THz; 1 THz = 1012 Hz), has remained largely underdeveloped, despite the identification of various possible applications. One of the major applications of THz spectroscopy systems is in material characterization, particularly of lightweight molecules and semiconductors [1] [2]. Furthermore, THz imaging systems may find important niche applications in security screening and manufacturing quality control [3] [5]. An important goal is the development of three dimensional (3-D) tomographic T-ray imaging systems. THz systems also have broad applicability in a biomedical context, such as the T-ray biosensor [6]. A simple biosensor has been demonstrated for detecting the glycoprotein avidin after binding with vitamin H (biotin) [7]. However, progresses in these areas have been hampered by the lack of efficient ultrafast electromagnetic wave / THz wave sources. As shown in Fig. 3.1, transistors and other electronic devices based on electron transport are limited to about ~ 300 GHz (~ 50 GHz being the rough practical limit; devices much above that are extremely inefficient) [8]. On the other hand, the wavelength of semiconductor lasers can be extended down to only ~ 10 μm (about ~ 30 THz) [9]. Between two technologies, lie the so called terahertz gap, where no semiconductor technology can efficiently convert electrical power into electromagnetic radiation. The lack of a high power, low cost, portable room temperature THz source is the most significant limitation of modern THz systems. A number of different mechanisms have been exploited to generate THz radiation, such as photocarrier acceleration in photoconducting antennas, second order nonlinear effects in electro-optical (EO) crystals and quantum cascade laser. Currently, conversion efficiencies in all of these sources are very low, and consequently, average THz beam powers tend to be in the nanowatt to microwatt range, whereas the average power of the femtosecond optical source is in the region of ~ 1 W. There is still a long way to go before commercial devices based on this principle can be mass-produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.