Abstract

The nonadiabatic quantum dynamics (QD) of cytosine and 1-methylcytosine in the gas phase is simulated for 250 fs after a photoexcitation to one of the first two bright states. The nuclear wavepacket is propagated on the coupled diabatic potential energy surfaces of the lowest seven excited states, including ππ*, nπ*, and Rydberg states along all the vibrational degrees of freedom. We focus in particular on the interplay between the bright and the dark nπ* states, not considering the decay to the ground electronic state. To run these simulations, we implemented an automatic general procedure to parametrize linear vibronic coupling (LVC) models with time-dependent density functional theory (DFT) computations and interfaced it with Gaussian package. The wavepacket was propagated with the multilayer version of the multiconfigurational time dependent Hartree method. Two different density functionals, PBE0 and CAM-B3LYP, which provide a different description of the relative stability of the lowest energy dark states, were used to parametrize the LVC Hamiltonian. Part of the photoexcited population on lowest HOMO-LUMO transition (πHπL*) decays within less than 100 fs to a nπ* state which mainly involves a promotion of an electron from the oxygen lone pair to the LUMO (nOπL*). The population of the second ππ* state decays almost completely, in <100 fs, not only to πHπL* and to nOπL* states but also to another nπL* state involving the nitrogen lone pair. The efficiency of the adopted protocol allowed us to check the accuracy of the predictions by repeating the QD simulations with different LVC Hamiltonians parametrized either at the ground-state minimum or at stationary structures of different relevant excited states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call