Abstract

We study the spatio-temporal dynamics of coherent amplification and lasing in planar gain-enhanced nanoplasmonic structures and show that a singularity in the density of optical states leads to a stopped-light feedback mechanism that allows for cavity-free photonic and surface-plasmon polariton nanolasing. We reveal that in the absence of cavity-induced feedback a phase-locked superposition of a quasi dispersion-free waveguide mode promotes the dynamic formation of a subwavelength lasing mode. Simulations on the basis of a full-time domain Maxwell-Bloch Langevin approach uncover a high spontaneous emission factor β≈0.9 and demonstrate that the stopped-light lasing/spasing mechanism is remarkably robust against interface roughness. Stopped-light surface-plasmon polariton lasing is shown to be stable for gain sections of a width of down to 200 nm but in wider gain structures of the order of 1 μm the dynamics is characterised by spatio-temporally oscillating lasing surface-plasmon polaritons with typical temporal and spatial periods of smaller than 5 fs and smaller than 100 nm. Stopped-light lasing thus provides opportunities for ultrafast nanolasing and the realization of ultra-thin lasing surfaces and offers a new route to ultrafast spasing and cavity-free active quantum plasmonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.