Abstract

With the advanced progress achieved in the field of nanotechnology, localized surface plasmon resonances are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump–probe spectroscopy results indicate that within ∼830 fs after photoexcitation of the 2D-WS2 semiconductor energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D-exciton transition energies at later time delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.