Abstract

In this study, we have explored the ultrafast formation and decay dynamics of exciton-polariton fluids at non-zero momenta, non-resonantly excited by a small-spot femtosecond pump pulse in a ZnO microcavity. Using the femtosecond angle-resolved spectroscopic imaging technique, multidimensional dynamics in both the energy and momentum degrees of freedom have been obtained. Two distinct regions with different decay rate in the energy dimension and various decay-channels in the momentum dimension can be well-resolved. Theoretical simulations based on the generalized Gross–Pitaevskii equation can reach a qualitative agreement with the experimental observations, demonstrating the significance of the initial potential barrier induced by the pump pulse during the decay process. The finding of our study can provide additional insights into the fundamental understanding of exciton-polariton condensates, enabling further advancements for controlling the fluids and practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.