Abstract

A quantum-kinetic approach to the ultrafast dynamics of carrier multiplication in semiconductor quantum dots is presented. We investigate the underlying dynamics in the electronic subband occupations and the time-resolved optical emission spectrum, focusing on the interplay between the light-matter and the Coulomb interaction. We find a transition between qualitatively differing behaviors of carrier multiplication, which is controlled by the ratio of the interaction induced time scale and the pulse duration of the exciting light pulse. On short time scales, i.e., before intra-band relaxation, this opens the possibility of detecting carrier multiplication without refering to measurements of (multi-)exciton lifetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call