Abstract

It is shown that the interplay between curvature and interfacial Dzyalonshinsky–Moriya interaction (DMI) is a pathway to ultrafast domain wall (DW) dynamics in ferromagnetic nanotubes. In this work, we theoretically study the effect that interfacial DMI has on the average velocity of a vortex DW in thin ferromagnetic nanotubes grown around a core composed of heavy atoms. Our main result shows that by delaying the Walker breakdown instability, the DW average velocity is of the order of 103 m s−1, which is greater than usual values for these systems. The remarkable velocities achieved through this configuration could greatly benefit the development of spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.