Abstract

The electronic band structure-controlled ultrafast demagnetization mechanism in Co2FexMn1-xSi Heusler alloy is underpinned by systematic variation of composition. We find the spin-flip scattering rate controlled by spin density of states at Fermi level is responsible for non-monotonic variation of ultrafast demagnetization time ({\tau}M) with x with a maximum at x = 0.4. Furthermore, Gilbert damping constant exhibits an inverse relationship with {\tau}M due to the dominance of inter-band scattering mechanism. This establishes a unified mechanism of ultrafast spin dynamics based on Fermi level position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.