Abstract

Herein, we developed and evaluated an electrochemical periodate (PI) activation system for the ultrafast degradation of aqueous micropollutants (τ < 3 s). Filters constructed from carbon nanotubes (CNT) coated with Fe2O3 nanoparticles on the outer (Fe2O3-out-CNT) and inner surfaces (Fe2O3-in-CNT) were prepared to regulate the generation of reactive oxygen species (ROS) during PI activation. The activation function of the electroactive nanohybrid filters lay in their ability to facilitate the redox cycling of Fe(III)/Fe(II) assisted by an electric field. The results showed that a non-radical (i.e., 1O2) pathway dominated the degradation process in the electro/Fe2O3-in-CNT/PI system, while a contrastive radical pathway (i.e., HO• and IO3•) was identified in the electro/Fe2O3-out-CNT/PI system. The electro/Fe2O3-in-CNT/PI system exhibited enhanced catalytic activity towards the micropollutants degradation relative to its electro/Fe2O3-out-CNT/PI counterpart. Density functional theory calculations suggested that PI could be directly decomposed under the nanoconfined environment, rather than forming a stable adsorption complex in the unconfined system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.