Abstract
DNA photolyases use blue light and fully reduced flavin cofactor to repair UV-induced cyclobutane pyrimidine dimers (CPD) formed between two adjacent thymine bases in DNA. Thymine can form [2 + 2] cyclobutane adducts with its biological isosteres like toluene upon UV irradiation, resulting in chemically different analogues of CPD. Here, we investigated the cycloreversion reactions of two such adducts formed between thymine and toluene, T<>Tol, catalyzed by a class-I CPD photolyase. The photolyase can bind to the T<>Tol adducts efficiently and restore the constituent bases upon excitation. Using femtosecond spectroscopy, we systematically characterized all the elementary steps involved in the enzymatic cycloreversion of the T<>Tol adducts and comprehensively analyzed the key intermolecular electron-transfer (ET) reactions and cyclobutane bond splitting steps. The initial electron injection to the bound adducts happens primarily through a two-step electron hopping mechanism, unlike in CPD repair where direct electron tunneling is dominant. After electron injection and ultrafast first-bond splitting, the delicate competition between the second bond splitting and a futile back ET dictates the overall reaction quantum yields of the adducts, influenced by the stability of adduct intermediates and steric crowding around the constituent bases. The final electron return for the cycloreversion reactions adopts a different pathway compared to CPD repair. The photolyase utilizes its conserved photorepair mechanism and allows ET pathway flexibility to reverse the [2 + 2] cycloaddition reaction of non-natural analogues of CPD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.