Abstract

Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is among the most promising solid electrolytes for the next generation’s all-solid-state lithium batteries. However, preparing LAGP electrolytes is time- and energy-intensive. In this work, LAGP glassy powders were sintered and crystallized in 180 s by ultrafast high-temperature sintering (UHS) under conditions attractive for continuous industrial processes (i.e., ambient pressure and atmosphere). The fast heating rates characteristic of UHS significantly delay crystallization, potentially decoupling crystallization and sintering. Furthermore, electrochemical impedance spectroscopy (EIS) characterizations reveal that LAGP sintered and crystallized by UHS has an ionic conductivity of 1.15 × 10–4 S/cm, slightly lower than conventionally annealed samples (1.75 × 10–4 S/cm). The lower conductivity can be attributed to poorer intergrain contact. To overcome this issue, additives such as B2O3 and Li3BO3 are used, resulting in ∼2 and ∼5 times higher grain boundary conductivity for LAGP+1 wt % B2O3 and LAGP+1 wt % Li3BO3, respectively, compared to LAGP. Overall, this work provides insights into unraveling the impact of UHS sintering on the LAGP Li+ conduction mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.