Abstract

The combined dynamic process of Förster resonance energy transfer and transient quenching is quantified in the time-resolved fluorescence of cationic polyfluorene/fluorescein-labelled single-stranded DNA complex. We found that the radiation boundary condition fails to predict transient quenching due to a single quenching rate at the encounter distance between a fluorophore and a quencher; however, the predictions of the micellar kinetics model were in good agreement with the measured time-resolved fluorescence as an alternative to the complicated distance-dependent quenching model. The combined dynamics model enables the separation of the rate of Förster resonance energy transfer from that of transient quenching, by which we obtained an accurate estimation of the donor–acceptor intermolecular distance (41±1.6Å) in comparison with the Förster distance (43Å).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.