Abstract

We propose a scheme to generate electric dipole moments in homonuclear molecular cations by creating, with an ultrashort pump pulse, a quantum superposition of vibrational states on electronic states strongly perturbed by very strong static electric fields. By field-induced molecular stabilization, the dipoles can reach values as large as 50 Debyes and oscillate on a time-scale comparable to that of the slow vibrational motion. We show that both the electric field and the pump pulse parameters can be used to control the amplitude and period of the oscillation, while preventing the molecule from ionizing or dissociating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.