Abstract

The L(a)-like S2 state (2A) of 4-(dimethylamino)benzonitrile was pumped at 267 nm in the gas phase at 130 degrees C. Nonresonant multiphoton ionization at 800 nm with mass-selective detection then probed the subsequent processes. Whereas ionization at the Franck-Condon geometry only gave rise to the parent ion, fragmentation increased on motion towards the charge-transfer (CT) state. This useful difference is ascribed to a geometry-dependent resonance in the ion. The time constants found are interpreted by ultrafast (approximately 68 fs) relaxation through a conical intersection to both the CT and the L(b)-type S1 state (1B). Then the population equilibrates between these two states within 1 ps. From there the molecule relaxes within 90 ps to a lower excited state which can only be a triplet state (T(n)) and then decomposes within 300 ps. Previous experiments either investigated only 1B --> CT relaxation-which does not take place in the gas phase or nonpolar solvents for energetic reasons--or, starting from S2 excitation, typically had insufficient time resolution (>1 ps) to detect the temporary charge transfer. Only recently temporary population of the CT state was found in a nonpolar solvent (Kwok et al., J. Phys. Chem. A. 2000, 104, 4188), a result fully consistent with our mechanism. We also show that S2 --> S1 relaxation does not occur vertically but involves an intermediate strong geometrical distortion, passing through a conical intersection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.