Abstract

We investigate the photophysical properties of polymer-encapsulating single-walled carbon nanotubes (SWNTs) using absorption spectroscopy, photoconductivity spectroscopy, and femtosecond pump–probe spectroscopy. In a polythiophene (PT)-encapsulating SWNT film, one or two PT layers are encapsulated within SWNTs, depending on the tube diameter. For single encapsulated PT layers, the photoconductivity action spectrum shows a large photocurrent signal corresponding to absorption bands associated with PT exciton and continuum states, indicating charge transfer between the PT and the small-diameter SWNT. Pump–probe measurements show that electron transfer to the SWNT occurs in 0.53 ps and electrons then recombine with holes remaining in the PT in 11 ps. In a coronene-polymer-encapsulating SWNT film, weak absorption bands at 1.7 and 3.4 eV are observed in addition to the SWNT spectrum. Band calculations allow these to be assigned to optical transitions between the electronic states originating from the coronene ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.