Abstract

In this work, the photoinduced charge separation (CS) via symmetry breaking in an orthogonal meso-β-linked boron dipyrromethene (BODIPY) dimer was investigated by polarized transient absorption spectroscopy. The time constant about 0.76 ps of the CS reaction determined in dimethyl sulfoxide is much faster than the solvation dynamics. The observed transient anisotropy of the BODIPY anion band implies that both hole and electron transfers occur with similar probabilities. The bidirectional charge transfer processes suggest that the locally excited state is weakly coupled to the polar solvent, and the solvation coupled excited-state structural relaxation within the BODIPY monomeric unit is rather limited. In combination with the electronic excitation analysis based on time-dependent density-functional theory calculations, we deduced that the CS in the orthogonal BODIPY dimer is enabled via the torsional motion associated with covalently connected BODIPY units, promoting the electronic coupling, and irrelevant to the dynamic solvent relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.