Abstract
Thin film nanocrystalline silicon (nc-Si), a promising material for photovoltaic and optoelectronic applications, is comprised of nanometer-scale crystals of silicon embedded in a matrix of hydrogenated amorphous silicon. The degree of crystallinity of the material can be controlled by varying the deposition conditions, yielding materials that span the transition from the amorphous to the nanocrystalline state, and yielding variable grain size and crystalline fraction. Pump-probe measurements using optical pulses 35 fs in duration in the near-infrared were carried out on a series of nc-Si films of varying composition. Photoexcitation results in an induced absorbance signal with a nonexponential time dependence that is strongly dependent on excitation density. The response can be understood in terms of a multicomponent model that includes distinct contributions from each phase of the heterogeneous material. We observe a 240-fs exponential relaxation process associated with intraband relaxation in the silicon crystallites, a response characteristic of bimolecular recombination in the amorphous silicon matrix, and a long-lived component assigned to grain boundary states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.