Abstract
The ultrafast carrier dynamics in CuInS2 (CIS) quantum dots (QDs) was studied by means of femtosecond transient absorption (TA) spectroscopy. The size-dependent 1S transition energy determined from bleaching spectra is in agreement with that calculated on the finite-depth-well model in the effective mass approximation. The TA bleaching comes from filling of electron quantized levels, allowing us to know the dynamics of the 1S electron in CIS QDs. The sub-100-ps electron trapping at surface defects in bare QDs accelerates with decreasing QD size, while is effectively suppressed in well-passivated CIS/ZnS core/shell QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.