Abstract

Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display the same band edge fluorescence decay kinetics, but the relative amplitudes of the short and long components differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron to the valence band where it combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct electron/hole recombination is attenuated within the initial 2−6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the “Dark Exciton”. The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-localized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.