Abstract

Coupling and spatial localization of energy on ultrafast timescales and particularly on the timescale of the excitation pulse in ultrashort laser irradiated dielectric materials are key elements for enabling processing precision beyond the optical limit. Transforming matter on mesoscopic scales facilitates the definition of nanoscale photonic functions in optical glasses. On these timescales, quantum interactions induced by charge non-equilibrium become the main channel for energy uptake and transfer as well as for the material structural change. We apply a first-principles model to determine dynamic distortions of energy bands following the rapid increase in the free-carrier population in an amorphous dielectric excited by an ultrashort laser pulse. Fused silica glass is reproduced using a system of (SiO4)4- tetrahedra, where density functional theory extended to finite-temperature fractional occupation reproduces ground and photoexcited states. Triggered by electronic charge redistribution, a bandgap narrowing of more than 2eV is shown to occur in fused silica under geometry relaxation. Calculations reveal that the bandgap decrease results from the rearrangement of atoms altering the bonding strength. Despite an atomic movement impacting strongly the structural stability, the observed change of geometry remains limited to 7% of the interatomic distance and occurs on the femtosecond timescale. This structural relaxation is thus expected to take place quasi-instantly following the photon energy flux. Moreover, under intense laser pulse excitation, fused silica loses its stability when an electron temperature of around 2.8eV is reached. A further increase in the excitation energy leads to the collapse of both the structure and bandgap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.