Abstract
Rechargeable alkaline zinc batteries are considered to be potential energy-storage systems owing to their natural abundance, low toxicity, and high capacity. However, their performance and efficiency are limited by the sluggish kinetics and irreversibility of the anode and cathode. In particular, high-capacity binary transition metal-based spinel materials that can store OH− anions are expected to replace commercial MnO cathodes owing to their abundant active sites of two or more transition metals. Herein, we report an ultrafast and reversible anion storage mechanism of spinel NiCo2O4 nanoarchitectures decorated onto N-doped reduced graphene oxide (NCO@N-rGO) for high-performance rechargeable alkaline zinc full cells. The NCO@N-rGO electrode exhibits high specific and rate capacities of 191 mA h g−1 at 1000 mA g−1 and 151 mA h g−1 even at 20 000 mA g−1, respectively, much higher than those of NCO@rGO and NCO. The as-designed cells achieve a record-high volumetric power density (7.20 W cm−3) among alkaline zinc full cells, along with a high energy density (14.93 mW h cm−3) and a capacity retention of 77% over 3000 cycles at 6000 mA g−1. These results are attributed to the facile charge-storage kinetics of the spinel framework, multiple Ni3+/Ni2+ and Co3+/Co2+ redox couples with OH−, and structural integrity of N-rGO as verified by electrochemical, ex situ XRD and XPS, and postmortem analyses. This work proposes a rational design of nanoarchitectured electrode materials for high volumetric performances and long-cycle life of rechargeable alkaline zinc batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.