Abstract
The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.