Abstract

The majority of microfluidic devices used as a platform for low-cost, rapid DNA analysis are glass devices; however, microchip fabrication in glass is costly and laborious, enhancing the interest in polymeric substrates, such as poly (methyl methacrylate) (PMMA), as an inexpensive alternative. Here, we report amplification in PMMA polymerase chain reaction (PCR) microchips providing full short tandem repeat profiles (16 of 16 loci) in 30-40 min, with peak height ratios and stutter percentages that meet literature threshold requirements. In addition, partial profiles (15 of 16 loci) were generated using an ultrafast PCR method in 17.1 min, representing a ~10-fold reduction in reaction time as compared to current amplification methods. Finally, a multichamber device was demonstrated to simultaneously amplify one positive, one negative, and five individual samples in 39 min. Although there were instances of loci dropout, this device represents a first step toward a microfluidic system capable of amplifying more than one sample simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.