Abstract

The performance of an all-optical logic OR gate is numerically studied and simulated. This Boolean operation is realized by using a semiconductor optical amplifier (SOA) and a delayed interferometer (DI) based on two-photon absorption (TPA). The input pulse intensities are high enough so that the two-photon-induced phase change is larger than the regular gain-induced phase change. The study is carried out with the effect of the amplified spontaneous emission (ASE) taken into account in the simulation analysis. The dependence of the output quality factor (Q-factor) on the data signals and SOA’s parameters is also investigated and discussed. The achieved results show that the OR gate is capable of operating at a data speed of 250 Gb/s with logical correctness and proper Q-factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.