Abstract
All-optical polarization switches based on near-resonant excitation have been demonstrated recently, which operate without significant real carriers excited in MQWs so as to avoid carriers accumulation. In this paper, we focus our investigation on the switch adopting InGaAsP MQWs because it could be compatible with the optical communication system. Our theoretical analysis is restricted to χ 3 regime (i.e., the lowest-order nonlinear regime) and based on the dynamics-controlled truncation (DCT) scheme which provides a formalism for studying the coherent dynamics in weakly-nonlinear coherent optics of semiconductors. By using the theoretical model based on DCT theory, the switching action was simulated. With this theoretical model, we study the respective contributions of phase space filling and Hartree–Fock mean field as main terms of the optical Stark effect to the switching process, then exhibit the influence of delay time and control intensity for the switching response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.