Abstract

The properties of palladium and nickel catalysts supported on ultradispersed diamond (UDD) were studied in the vapor-phase hydrodechlorination (HDC) reaction of chlorobenzene and the multiphase HDC of polychlorobenzenes. The catalysts on UDD exhibited a number of advantages: the vapor-phase HDC of chlorobenzene on Ni/UDD occurred at lower temperatures, and the multiphase HDC of chlorobenzene, 1,3,5-trichlorobenzene, and 2,4,8-trichlorodibenzofuran on Pd/UDD occurred more rapidly than that on catalysts supported on activated carbon. The structure of the catalysts and the electronic states of the active components were studied using IR spectroscopy, temperature-programmed reduction, and adsorption techniques. It was found that the properties of the catalysts depend on the electronic state of palladium, which depends on its concentration in the sample; the structural properties, which are responsible for the accessibility of the active surface to adsorption; and the presence of other metal impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.