Abstract

Abstract Studies of ultradense hydrogen H(0) in our laboratory have been reported in around 50 publications. The proton solar wind was shown to agree well with the protons ejected by Coulomb explosions in p(0). H(0) is a quantum material and can have at least two slightly different forms—ultradense protium p(0) and ultradense deuterium D(0)—which are stable even inside many stars. Mixed phases pD(0) have also been studied. These phases are the lowest-energy forms of hydrogen, and H(0) will probably exist everywhere where hydrogen exists in the universe. Rotational spectra from H(0) have been studied in laboratory experiments in emission in the visible range, giving good agreement with observations of ERE (extended red emission) in space. The ERE bands and sharp peaks agree with rotational transitions for a few coupled p–p and p–D pairs in the well studied spin state s = 4 in H(0). Since ERE is observed almost everywhere in space, this proves that H(0) is common in space. The rotational absorption from the ground state in p(0) agrees with the 220 nm extinction bump for three coupled p–p pairs in the most common spin state s = 2 studied. The uneven distribution of deuterium in space may be due to the slightly different properties of D(0), which separate it from p(0). The dark “missing mass” concluded to exist in the halos of rotating galaxies is proposed as being due to accumulation of H(0) there. Other important implications of the superfluid and superconductive phase H(0) in space await discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call