Abstract

Graphene plasmons have become promising candidates for deep-subwavelength nanoscale optical devices due to their strong field confinement and low damping. Among these nanoscale optical devices, band-pass filter for wavelength selection and noise filtering are key devices in an integrated optical circuit. However, plasmonic filters are still oversized because large resonant cavities are needed to perform frequency selection. Here, an ultra-compact filter integrated in a graphene plasmonic waveguide was designed, where a rectangular resonant cavity is inside a graphene nanoribbon waveguide. The properties of the filter were studied using the finite-difference time-domain method and demonstrated using the analytical model. The results demonstrate the band-pass filter has a high quality factor (20.36) and electrically tunable frequency response. The working frequency of the filter could also be tuned by modifying the cavity size. Our work provides a feasible structure for a graphene plasmonic nano-filter for future use in integrated optical circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.