Abstract

Optical refractometer constitutes the core element for many applications, from determining the purity and concentration of pharmaceutical ingredients to measuring the sugar content in food and beverages, and the analysis of petroleum. Here, we demonstrated the monolithic integration of light-emitting diodes (LEDs) and photodetectors (PDs) to fabricate ultracompact refractometers with a chip size of 475 × 320 μm2. The light emission and photodetection properties of the devices containing the same InGaN/GaN multi-quantum wells have been characterized, confirming that the PD can respond to the emission of the LED. The flip-chip assembly of the chip enables the exposed sapphire substrate to be in direct contact with the solution, and the refractive index sensing capability governed by the change of critical angle and Fresnel reflection at the sapphire/solution interface has been investigated. The processing of the optically smooth surface of sapphire and the integration of high-reflectance distributed Bragg reflector beneath the devices facilitate the amount of light received by the PD. The monolithic chip is capable of detecting solutions with a refractive index ranging from 1.3325 to 1.5148 RIU and exhibits a sensitivity of 7.77 μA/RIU and a resolution of 6.4 × 10-6 RIU at the LED current of 10 mA. Rapid real-time responses of 33.9 ms for rise time and 34.7 ms for fall time are obtained in the detected photocurrent, thereby verifying the feasibility of the chip-scale refractometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call