Abstract

The mass-imbalanced three-body recombination process that forms a shallow dimer is shown to possess a rich Efimov-Stückelberg landscape, with corresponding spectra that differ fundamentally from the homonuclear case. A semianalytical treatment of the three-body recombination predicts unusual spectra with intertwined resonance peaks and minima and yields in-depth insight into the behavior of the corresponding Efimov spectra. In particular, the patterns of the Efimov-Stückelberg landscape are shown to depend inherently on the degree of diabaticity of the three-body collisions, which strongly affects the universality of the heteronuclear Efimov states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call