Abstract

We report on the generation of ultrabroadband supercontinuum (SC) by filamentation of two optical-cycle, carrier-envelope phase-stable pulses at 2 μm in fused silica, sapphire, CaF₂ and YAG. The SC spectra extend from 450 nm to more than 2500 nm, and their particular shapes depend on dispersive properties of the materials. Prior to spectral super-broadening, we observe third-harmonic generation, which occurs in the condition of large phase and group velocity mismatch and consists of free and driven components. A double-peaked third-harmonic structure coexists with the SC pulse as demonstrated by the numerical simulations and verified experimentally. The SC pulses have stable carrier envelope phase with short-term rms fluctuations of ∼ 300 mrad, as simultaneously measured in YAG crystal by f-2f and f-3f interferometry, where the latter makes use of intrinsic third-harmonic generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.