Abstract
We explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields. For this purpose, we excite a W/CoFeB/Pt trilayer (thickness of 5.6 nm) on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, and wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm−1, and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of its amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range on the sub-picosecond time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.