Abstract

An ultrabroadband microwave metamaterial absorber (MMA) based on an electric split-ring resonator (ESRR) loaded with lumped resistors is presented. Compared with an ESRR MMA, the composite MMA (CMMA) loaded with lumped resistors offers stronger absorption over an extremely extended bandwidth. The reflectance simulated under different substrate loss conditions indicates that incident electromagnetic (EM) wave energy is mainly consumed by the lumped resistors. The simulated surface current and power loss density distributions further illustrate the mechanism underlying the observed absorption. Further simulation results indicate that the performance of the CMMA can be tuned by adjusting structural parameters of the ESRR and lumped resistor parameters. We fabricated and measured MMA and CMMA samples. The CMMA yielded below −10 dB reflectance from 4.4 GHz to 18 GHz experimentally, with absorption bandwidth and relative bandwidth of 13.6 GHz and 121.4%, respectively. This ultrabroadband microwave absorber has potential applications in the electromagnetic energy harvesting and stealth fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.