Abstract

Ultrabroadband light absorbers are attracting increasing interest for applications in energy harvesting, photodetection, self-regulated devices or soft robotics. However, current absorbers show detrimental insufficient absorption spectral range, or light angle and polarization dependence. Here we show that the unexplored optical properties of highly-damped plasmonic materials combined with the infrared absorption of thin polymer films enable developing ultrabroadband light-absorbing soft metamaterials. The developed metamaterial, composed of a nanostructured Fe layer mechanically coupled to a thin polydimethylsiloxane (PDMS) film, shows unprecedented ultrabroadband and angle-independent optical absorption (averaging 84% within 300–18000 nm). The excellent photothermal efficiency and large thermal-expansion mismatch of the metamaterial is efficiently transformed into large mechanical deflections, which we exploit to show an artificial iris that self-regulates the transmitted light power from the ultraviolet to the long-wave infrared, an untethered light-controlled mechanical gripper and a light-triggered electrical switch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call