Abstract
Broadband response is pursued in both infrared (IR) and terahertz (THz) detection technologies, which find their applications in both terrestrial and astronomical realms. Herein, we report an ultrabroadband and multiband IR/THz detector based on blocked-impurity-band detecting principle. The detectors are prepared by implanting phosphorus into germanium (Ge:P), where photoresponses with a P impurity band, a self-interstitial defect band, and a vacancy-P (V-P) pair defect band are realized simultaneously. The response spectra of the detectors show ultrabroad and dual response bands in a range of 3–28 μm (IR band) and 40–165 μm (THz band), respectively. Additionally, a tiny mid-IR (MIR) band within 3–4.2 μm is embedded in the IR band. The THz band arises from the P impurity band, whereas the IR and the MIR bands are ascribed to the two defect bands. At 150 mV and 4.5 K, the peak detectivities of the three bands are obtained as 2.9 × 10 12 Jones (at 3.9 μm), 6.8 × 10 12 Jones (at 16.3 μm), and 9.9 × 10 12 Jones (at 116.5 μm), respectively. The impressive coverage and sensitivity of the detectors are promising for applications in IR and THz detection technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.