Abstract

Extending the optical communication wavelengths to 2 µm can significantly increase data capacity. Silicon photonics, which is a proven device integration technology, has made rapid progress at 2 µm recently. As a fundamental functional element in the photonic design kit, the 3 dB power splitter has been extensively studied in both the 1.55 µm and 2 µm regime. While the device is highly desirable to operate over both wave bands, the large waveguide dispersion in silicon makes it challenging. In this work, we demonstrate an ultra-broadband power splitter on silicon, which has a 0.2 dB bandwidth exceeding 520 nm from 1500 to 2020 nm according to simulations. The beam splitter is realized by a triple tapered Y-junction, and its operational bandwidth is greatly increased by subwavelength grating structure. The device has an ultra-compact footprint of only 3µm×2µm. Due to the limitations on the setup and coupling technique, we measure the device bandwidth in 1.55 µm and 2 µm wave bands. The device insertion loss is measured to be below 0.4 dB from 1500 to 1620 nm and from 1960 to 2020 nm, respectively. According to these results, the proposed device is believed to be capable of operating over a broadband from 1.55 µm and 2 µm wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.