Abstract

An ultrabroad-band x-ray source, with photon energies from 10 keV to >1 MeV, based on a picosecond laser-driven plasma accelerator, is characterized and used to radiograph high-energy-density-science relevant targets. The measured yield of 1012 photons/shot is reaching the necessary photon yields to radiograph, in a single shot, high areal density objects and matter under extreme conditions. By focusing a short laser pulse (120 J, 1 ps) into a gas jet, a <100 mrad electron beam with energies up to 350 MeV and up to 70 nC of charge was produced by a combination of laser self-modulation instability and direct laser acceleration. A foil placed at the exit of the gas jet is used to convert part of the electron beam energy into x rays through inverse bremsstrahlung and/or inverse Compton scattering, generating a bright, broad-band, high-photon-energy beam. This beam is used to radiograph a gold half hohlraum with a high-density sphere inside with relevant characteristics for high-energy-density science and inertial confinement fusion. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.