Abstract

Two-dimensional (2D) transition metal carbide MXene-based materials hold great potentials applied for new electromagnetic wave (EMW) absorbers. However, the application of MXenes in the field of electromagnetic wave absorption (EMA) is limited by the disadvantages of poor impedance matching, single loss mechanism, and easy oxidation. In this work, MoO3/TiO2/Mo2TiC2Tx hybrids were prepared by the annealing-treated Mo2TiC2Tx MXene and uniform MoO3 and TiO2 oxides in-situ grew on Mo2TiC2Tx layers. At the annealing temperature of 300 °C, the minimum reflection loss (RLmin) value of MoO3/TiO2/Mo2TiC2Tx reaches −30.76 dB (2.3 mm) at 10.18 GHz with a significantly broadening effective absorption bandwidth (EAB) of 8.6 GHz (1.8 mm). The in-situ generated oxides creating numerous defects and heterogeneous interfaces enhance dipolar and interfacial polarizations and optimize the impedance matching of Mo2TiC2Tx. Considering the excellent overall performance, the MoO3/TiO2/Mo2TiC2Tx hybrids can be a promising candidate for EMA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call