Abstract
Ultrabright fluorescent nanoparticles (NPs) hold great promise for demanding bioimaging applications. Recently, extremely bright molecular crystals of cationic fluorophores were obtained by hierarchical coassembly with cyanostar anion-receptor complexes. These small-molecule ionic isolation lattices (SMILES) ensure spatial and electronic isolation to prohibit aggregation quenching of dyes. We report a simple, one-step supramolecular approach to formulate SMILES materials into NPs. Rhodamine-based SMILES NPs stabilized by glycol amphiphiles show high fluorescence quantum yield (30 %) and brightness per volume (5000 M-1 cm-1 /nm3 ) with 400 dye molecules packed into 16-nm particles, corresponding to a particle absorption coefficient of 4×107 M-1 cm-1 . UV excitation of the cyanostar component leads to higher brightness (>6000 M-1 cm-1 / nm3 ) by energy transfer to rhodamine emitters. Coated NPs stain cells and are thus promising for bioimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.