Abstract
The high tech industrial revolution in the last fifty years depleted and ruined the planet natural resources. Energy harvesting is the main challenge in the research in green technologies. Compact wideband efficient antennas are crucial for energy harvesting portable sensors and systems. Small antennas have low efficiency. The efficiency of 5G, IoT communication and energy harvesting systems may be improved by using wideband efficient passive and active antennas. The system dynamic range may be improved by connecting amplifiers to the small antenna feed line. Ultra-wideband portable harvesting systems are presented in this paper. This paper presents new Ultra-Wideband energy harvesting system and antennas in frequencies ranging from 0.15 GHz to 18 GHz. Three wideband antennas cover the frequency range from 0.15 GHz to 18 GHz. A wideband metamaterial antenna with metallic strips covers the frequency range from 0.15 GHz to 0.42 GHz. The antenna bandwidth is around 75% for VSWR better than 2.3:1. A wideband slot antenna covers the frequency range from 0.4 GHz to 6.4 GHz. A wideband fractal notch antenna covers the frequency range from 6 GHz to 18 GHz. Printed passive and active notch and slot antennas are compact, low cost and have low volume. The active antennas may be employed in energy harvesting portable systems. The antennas and the harvesting system components may be assembled on the same, printed board. The printed notch and slot antennas bandwidth are from 75% to 100% for VSWR better than 3:1. The slot and notch antenna gain is around 3 dBi with efficiency higher than 90%. The antennas electrical parameters were computed in free space and near the human body. There is a good agreement between computed and measured results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Sensor Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.